4.5 Article

Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite

Journal

JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
Volume 298, Issue 1, Pages 599-603

Publisher

SPRINGER
DOI: 10.1007/s10967-012-2406-6

Keywords

Adsorption; Uranium; Graphene oxide; Sepiolite; Composites

Funding

  1. National Natural Science Foundation of China [40372109, 41003015]

Ask authors/readers for more resources

Adsorptive behavior of uranium from aqueous solution on graphene oxide supported on sepiolite composites (GO@sepiolite composites) as a function of pH, ionic strength, temperature and initial uranium concentration was carried out by the batch techniques. GO@sepiolite composites was synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and potentiometric acid-base titration. According to XRD patterns and SEM images, the graphene oxide nanosheets were grafted on sepiolite surface successfully. The macroscopic results showed that the adsorption of uranium on GO@sepiolite composites was significantly depended on pH, whereas no effect of ionic strength on uranium adsorption at high pH and high ionic strength conditions was observed. The uptake equilibrium is best described by Langmuir adsorption isotherm, and the maximum adsorption capacity (Q(e)) of GO@sepiolite composites at pH 5.0 and T = 298 K were calculated to be 161.29 mg/g. Thermodynamic results indicated that the adsorption of uranium on GO@sepiolite composites is the spontaneous and exothermic process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available