4.5 Article

Radiative efficiencies and global warming potentials using theoretically determined absorption cross-sections for several hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs)

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2011.05.001

Keywords

Infrared spectra; Radiative efficiencies; Global warming potentials; CFC alternatives; Hydrofluoroethers; Hydrofluoropolyethers

Funding

  1. UK Engineering and Physical Sciences Research Council National Service for Computational Chemistry Software (NSCCS)
  2. Consejeria de Educacion y Ciencia de la Junta de Comunidades de Castilla-La Mancha
  3. European Social Fund (ESF)
  4. Spanish Ministerio de Ciencia e Innovacion [CGL2007-62479/CLI]
  5. Engineering and Physical Sciences Research Council [EP/E500536/1] Funding Source: researchfish

Ask authors/readers for more resources

Integrated infrared cross-sections and wavenumber positions for the vibrational modes of a range of hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs) have been calculated. Spectra were determined using a density functional method with an empirically derived correction for the wavenumbers of band positions. Radiative efficiencies (REs) were determined using the Pinnock et al. method and were used with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). For the HFEs and the majority of the molecules in the HG series HFPEs, theoretically determined absorption cross-sections and REs lie within ca. 10% of those determined using measured spectra. For the larger molecules in the HG series and the HG' series of HFPEs, agreement is less good, with theoretical values for the integrated cross-sections being up to 35% higher than the experimental values; REs are up to 45% higher. Our method gives better results than previous theoretical approaches, because of the level of theory chosen and, for REs, because an empirical wavenumber correction derived for perfluorocarbons is effective in predicting the positions of C-F stretching frequencies at around 1250 cm(-1) for the molecules considered here. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available