4.5 Article

Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome

Journal

JOURNAL OF PROTEOMICS
Volume 73, Issue 4, Pages 753-768

Publisher

ELSEVIER
DOI: 10.1016/j.jprot.2009.10.009

Keywords

Arbuscular mycorrhiza (AM); Aphanomyces; Differential gel electrophoresis (DIGE); Interactome; Medicago; Sinorhizobium

Funding

  1. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

Symbiosis- and pathogenesis-related early protein induction patterns in the model legume Medicago truncatula were analysed with two-dimensional differential gel electrophoresis. Two symbiotic soil microorganisms (Glomus intraradices, Sinorhizobium meliloti) were used in single infections and in combination with a secondary pathogenic infection by the oomycete Aphanomyces euteiches. Proteomic analyses performed 6 and 24 h after inoculations led to identification of 87 differentially induced proteins which likely represent the M. truncatula root 'interactome'. A set of proteins involved in a primary antioxidant defense reaction was detected during all associations investigated. Symbiosis-related protein induction includes a typical factor of early symbiosis-specific signalling (CaM-2), two Ran-binding proteins of nucleocytoplasmic signalling, and a set of energy-related enzymes together with proteins involved in symbiosis-initiated C- and N-fixation. Pathogen-associated protein induction consists of mainly PR proteins, Kunitz-type proteinase inhibitors, a lectin, and proteins related to primary carbohydrate metabolism and phytoalexin synthesis. Absence of PR proteins and decreased pathogen-induced protein patterns during mixed symbiotic and pathogenic infections indicate bioprotective effects due to symbiotic co-infection. Several 14-3-3 proteins were found as predominant proteins during mixed infections. With respect to hormone-regulation, A. euteiches infection led to induction of ABA-related pathways, while auxin-related pathways are induced during symbiosis. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available