4.7 Article

Deep and Precise Quantification of the Mouse Synaptosomal Proteome Reveals Substantial Remodeling during Postnatal Maturation

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 13, Issue 10, Pages 4310-4324

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr500456t

Keywords

Quantitative proteomics; mouse synaptosomal proteome; postnatal maturation; high resolution strong cation exchange chromatography; iTRAQ

Funding

  1. Austrian Science Fund FWF [SFB F3402-B03, P2465-B24, TRP 308-N15]
  2. European Commission via the Seventh Framework Programme [222883-2, 262067]

Ask authors/readers for more resources

During postnatal murine maturation, behavioral patterns emerge and become shaped by experience-dependent adaptations. During the same period, the morphology of dendritic spines, the morphological correlates of excitatory synapses, is known to change, and there is evidence of concurrent alterations of the synaptosomal protein machinery. To obtain comprehensive and quantitative insights in the developmental regulation of the proteome of synapses, we prepared cortical synaptosomal fractions from a total of 16 individual juvenile and adult mouse brains (age 3 or 8 weeks, respectively). We then applied peptide-based iTRAQ labeling (four pools of 4 animals) and high-resolution two-dimensional peptide fractionation (99 SCX fractions and 3 h reversed-phase gradients) using a hybrid CID-HCD acquisition method on a Velos Orbitrap mass spectrometer to identify a comprehensive set of synaptic proteins and to quantify changes in protein expression. We obtained a data set tracking expression levels of 3500 proteins mapping to 3427 NCBI GeneIDs during development with complete quantification data available for 3422 GeneIDs, which, to the best of our knowledge, constitutes the deepest coverage of the synaptosome proteome to date. The inclusion of biological replicates in a single mass spectrometry analysis demonstrated both high reproducibility of our synaptosome preparation method as well as high precision of our quantitative data (correlation coefficient R = 0.87 for the biological replicates). To evaluate the validity of our data, the developmental regulation of eight proteins identified in our analysis was confirmed independently using western blotting. A gene ontology analysis confirmed the synaptosomal nature of a large fraction of identified proteins. Of note, the set of the most strongly regulated proteins revealed candidates involved in neurological processes in health and disease states. This highlights the fact that developmentally regulated proteins can play additional roles in neurological disease processes. All data have been deposited to the ProteomeXchange with identifier PXD000552.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available