4.7 Article

Label-Free Glycopeptide Quantification for Biomarker Discovery in Human Sera

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 13, Issue 11, Pages 4821-4832

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr500242m

Keywords

glycoproteomics; label-free quantification; site-specific glycosylation; biomarker discovery

Funding

  1. NSF [DBI-0642897, 1R01GM093322-03]
  2. Persistent Systems

Ask authors/readers for more resources

Glycan moieties of glycoproteins modulate many biological processes in mammals, such as immune response, inflammation, and cell signaling. Numerous studies show that many human diseases are correlated with quantitative alteration of protein glycosylation. In some cases, these changes can occur for certain types of glycans over specific sites in a glycoprotein rather than on the global abundance of the glycoprotein. Conventional analytical techniques that analyze the abundance of glycans cleaved from glycoproteins cannot reveal these subtle effects. Here we present a novel statistical method to quantify the site-specific glycosylation of glycoproteins in complex samples using label-free mass spectrometric techniques. Abundance variations between sites of a glycoprotein as well as different glycoforms, that is, glycopeptides with different glycans attached to the same site, can be detected using these techniques. We applied our method to an esophageal cancer study based on blood serum samples from cancer patients in an attempt to detect potential biomarkers of site-specific N-linked glycosylation. A few glycoproteins, including vitronectin, showed significantly different site-specific glycosylations within cancer/control samples, indicating that our method is ready to be used for the discovery of glycosylated biomarkers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available