4.7 Article

Quantitative Protease Cleavage Site Profiling using Tandem-Mass-Tag Labeling and LC-MALDI-TOF/TOF MS/MS Analysis

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 11, Issue 3, Pages 1812-1820

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr201051e

Keywords

relative quantification; PICS approach; peptide library; TMT; isobaric labeling; mass spectrometry

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB877, Z2]

Ask authors/readers for more resources

Knowledge of cleavage site specificity and activity are major prerequisites for understanding protease function. On the basis of a recently presented approach for proteomic identification of cleavage sites (PICS) in proteome-derived peptide libraries, we developed an isobaric labeling quantitative LC-MALDI-TOF/TOF MS/MS approach (Q-PICS) for simultaneous determination of cleavage site specificity and robust relative quantification of proteolytic events. For GluC-protease, 737 cleavage sites were identified in a yeast proteome-derived peptide library; 94.0% showed the typical GluC specificity for peptide bonds at glutamyl and aspartyl residues. The six-plex tandem mass tagging strategy allowed for three simultaneous replicates in a single run, guaranteeing high confidence and robust statistics for quantitative measurements. Using the quantitative capacity of Q-PICS, we performed a comparison of cleavage site specificity of GluC in two different buffer systems. The results support earlier findings describing that apparent difference between the buffer systems are probably caused by the inhibitory effect of bicarbonate on the overall GluC activity and that the preference for Glu-X bonds compared to Asp-X bonds is independent of the buffer system used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available