4.7 Article

Metabolomic Analysis of Livers and Serum from High-Fat Diet Induced Obese Mice

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 10, Issue 2, Pages 722-731

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr100892r

Keywords

obesity; metabolomics; UPLC-Q-TOF; GC-MS; betaine; carnitine; acylcarnitine; lysophosphatidylcholine; beta-oxidation; serotonin; high-fat diet

Funding

  1. Korea Food Research Institute
  2. Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea

Ask authors/readers for more resources

Liver and serum metabolites of obese and lean mice fed on high fat or normal diets were analyzed using ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry, gas chromatography mass spectrometry, and partial least-squares-discriminant analysis (PLS-DA). Obese and lean groups were clearly discriminated from each other on PLS-DA score plot and major metabolites contributing to the discrimination were assigned as lipid metabolites (fatty acids, phosphatidylcholines (PCs), and lysophosphatidylcholines (lysoPCs)), lipid metabolism intermediates (betaine, carnitine, and acylcarnitines), amino acids, acidic compounds, monosaccharides, and serotonin. A high-fat diet increased lipid metabolites but decreased lipid metabolism intermediates and the NAD/NADH ratio, indicating that abnormal lipid and energy metabolism induced by a high-fat diet resulted in fat accumulation via decreased beta-oxidation. In addition, this study revealed that the levels of many metabolites, including serotonin, betaine, pipecolic acid, and uric acid, were positively or negatively related to obesity-associated diseases. On the basis of these metabolites, we proposed a metabolic pathway related to high-fat diet-induced obesity. These metabolites can be used to better understand obesity and related diseases induced by a hyperlipidic diet. Furthermore, the level changes of these metabolites can be used to assess the risk of obesity and the therapeutic effect of obesity management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available