4.7 Article

MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoretical-Experimental Study of G3PDH Protein from Trichomonas gallinae

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 10, Issue 4, Pages 1698-1718

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr101009e

Keywords

Drug-protein interaction; protein structure complex networks; Trichomonas gallinae proteome; rasagiline inhibitors of MAO enzymes; multitarget QSAR; Markov model

Funding

  1. Xunta de Galicia
  2. European Social Fund (ESF)
  3. [07CSA008203PR]

Ask authors/readers for more resources

Many drugs with very different affinity to a large number of receptors are described. Thus, in this work, we selected drug target pairs (DTPs/nDTPs) of drugs with high affinity/nonaffinity for different targets. Quantitative structure activity relationship (QSAR) models become a very useful tool in this context because they substantially reduce time and resource-consuming experiments. Unfortunately, most QSAR models predict activity against only one protein target and/or they have not been implemented on a public Web server yet, freely available online to the scientific community. To solve this problem, we developed a multitarget QSAR (mt-QSAR) classifier combining the MARCH-INSIDE software for the calculation of the structural parameters of drug and target with the linear discriminant analysis (LDA) method in order to seek the best model. The accuracy of the best LDA model was 94.4% (3,859/4,086 cases) for training and 94.9% (1,909/2,012 cases) for the external validation series. In addition, we implemented the model into the Web portal Bio-AIMS as an online server entitled MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool (MIND-BEST), located at http://miaja.tic.udc.es/BioAIMS/MIND-BEST.php. This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally, we illustrated two practical uses of this server with two different experiments. In experiment 1, we report for the first time a MIND-BEST prediction, synthesis, characterization, and MAO-A and MAO-B pharmacological assay of eight rasagiline derivatives, promising for anti-Parkinson drug design. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF and TOF/TOF MS, MASCOT search, 3D structure modeling with LOMETS, and MIND-BEST prediction for different peptides as new protein of the found in the proteome of the bird parasite Trichomonas gallinae, which is promising for antiparasite drug targets discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available