4.7 Article

Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 11, Issue 2, Pages 906-916

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr200711w

Keywords

classical galactosemia; differential glycomics; urinary exosomes; membrane glycoprotein; Tamm-Horsfall glycoprotein; N-glycosylation; MALDI mass spectrometry

Funding

  1. Galactosemia Initiative Germany

Ask authors/readers for more resources

A variety of genetic variations in the galactose-1-phosphate uridyltransferase (GALT) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm-Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm-Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available