4.7 Article

Training, Selection, and Robust Calibration of Retention Time Models for Targeted Proteomics

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 9, Issue 10, Pages 5209-5216

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr1005058

Keywords

retention time prediction; support vector regression; targeted proteomics; peptide identification; bioinformatics

Funding

  1. Swedish Research Council
  2. Carl Trygger Foundation

Ask authors/readers for more resources

Accurate predictions of peptide retention times (RT) in liquid chromatography have many applications in mass spectrometry-based proteomics. Most notably such predictions are used to weed out incorrect peptide-spectrum matches, and to design targeted proteomics experiments. In this study, we describe a RT predictor, ELUDE, which can be employed in both applications. ELUDE's predictions are based on 60 features derived from the peptide's amino acid composition and optimally combined using kernel regression. When sufficient data is available, ELUDE derives a retention time index for the condition at hand making it fully portable to new chromatographic conditions. In cases when little training data is available, as often is the case in targeted proteomics experiments, ELUDE selects and calibrates a model from a library of pretrained predictors. Both model selection and calibration are carried out via robust statistical methods and thus ELUDE can handle situations where the calibration data contains erroneous data points. We benchmarked our method against two state-of-the-art predictors and showed that ELUDE outperforms these methods and tracked up to 34% more peptides in a theoretical SRM method creation experiment. ELUDE is freely available under Apache License from http://per-colator.com.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available