4.7 Article

Secretome Analysis of Multiple Pancreatic Cancer Cell Lines Reveals Perturbations of Key Functional Networks

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 9, Issue 9, Pages 4376-4392

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr1001109

Keywords

proteomics; secretome; mass spectrometry; label-free quantitation; cell culture; pancreatic cancer; network enrichment analysis

Funding

  1. Italian Association for Cancer Research
  2. Alleanza contro il Cancro

Ask authors/readers for more resources

The cancer secretome is a rich repository in which to mine useful information for both cancer biology and clinical oncology. To help understand the mechanisms underlying the progression of pancreatic cancer, we characterized the secretomes of four human pancreatic ductal adenocarcinoma (PDAC) cell lines versus a normal counterpart. To this end, we used a proteomic workflow based on high-confidence protein identification by mass spectrometry, semiquantitation by a label-free approach, and network enrichment analysis by a system biology tool. Functional networks significantly enriched with PDAC-dysregulated proteins included not only expected alterations within key mechanisms known to be relevant for tumor progression (e.g., cell cell/cell matrix adhesion, extracellular matrix remodeling, and cytoskeleton rearrangement), but also other extensive, coordinated perturbations never observed in pancreatic cancer. In particular, we highlighted perturbations possibly favoring tumor progression through immune escape (i.e., inhibition of the complement system, deficiency of selected proteasome components within the antigen-presentation machinery, and inhibition of T cell cytoxicity), and a defective protein folding machinery. Among the proteins found concordantly oversecreted in all of our PDAC cell lines, many are reportedly overexpressed in pancreatic cancer (e.g., CD9 and Vimentin), while others (PLOD3, SH3L3, PCBP1, and SFRS1) represent novel PDAC-secreted proteins that may be worth investigating.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available