4.7 Article

Differential Protein Levels and Post-Translational Modifications in Spinal Cord Injury of the Rat

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 9, Issue 3, Pages 1591-1597

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr901049a

Keywords

spinal cord injury; two-dimensional gel electrophoresis; mass spectrometry; rat; protein levels; contusion injury; ion trap; post-translational modification

Ask authors/readers for more resources

Although changes in protein expression in spinal cord injury (SCI) would be of pivotal interest, information so far is limited. It was therefore the aim of the study to determine protein levels and post-translational modifications in the early phase following SCI in the rat. SCI was induced in Sprague-Dawley rats and sham operated rats served as controls. A gel-based proteomic approach using two-dimensional gel electrophoresis followed by quantification with specific software and subsequent identification of differentially expressed proteins by nano-ESI-LC-MS/MS was applied. Proteins of several pathways and cascades were dysregulated in SCI: 14-3-3 epsilon protein, dynein light chain 1, and tubulin beta-5 chain showed higher levels in SCI, whereas adenylyl cyclase associated protein 1, dihydropyrimidinase-related protein 2, F-actin capping protein subunit beta, glyceraldehyde-3-phosphate dehydrogenase, stress-induced phosphoprotein 1 and transthyretin showed lower levels in the injured tissue. Post-translational modifications indicated free oxygen radical attack on proteins in SCI. The occurrence of stress is indicated by deranged stress-induced phosphoprotein 1 and signaling abnormalities are reflected by adenylyl cyclase-associated protein 1 and 14-3-3 epsilon protein. The findings propose the involvement of the corresponding cascades and challenge further work into aberrant signaling and oxidative stress in SCI, which may form the basis for experimental intervention for spinal cord trauma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available