4.7 Article

Integrative Study on Proteomics, Molecular Physiology, and Genetics Reveals an Accumulation of Cyclophilin-Like Protein, TaCYP20-2, Leading to an Increase of Rht Protein and Dwarf in a Novel GA-Insensitive Mutant (gaid) in Wheat

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 9, Issue 8, Pages 4242-4253

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr100560v

Keywords

dwarf mutant gaid; gibberellin; proteomics; cyclophilin; DELLA protein; Triticum aestivum (wheat)

Funding

  1. National Science Foundation of China for Innovative Research Groups [30821007]
  2. CAS

Ask authors/readers for more resources

Dwarfism with a Green Revolution phenotype is a desirable agronomic trait for crop cultivators as associated with increased yield, improved lodging resistance and higher fertility. Few dwarf mutants of hexaploid wheat (Triticum aestivum), except for Rht-B1 and Rht-D1, have been identified. Here, we report on a novel dwarf natural wheat mutant, which is identified as a gibberellic acid (GA)-insensitive dwarf (gaid) mutant for its semidominant blocking GA signaling pathway. Physiological and morphological investigations showed that the shoot elongation of gaid mutant plants is insensitive to exogenous GA(3) treatment. Expression of TaGA20ox1 in the gaid mutant was enhanced after GA3 treatment. The short stem of gaid resulted from reduced cell elongation. The transcript expression of Rht, encoding a DELLA protein negatively regulating GA signaling in wheat, displayed similar patterns between gaid and wild type. Contrarily, the degradation of Rht induced by GA3 treatment was suppressed in the mutant. 2-DE screening assay showed that the expression patterns of the mutant, as well as their responses to GA3, were changed as compared with the wild type. In the mutant, one of enriched proteins was identified as TaCYP20-2 by Q-TOF MS approach and immunoblotting. TaCYP20-2 was localized in the chloroplast and cell plasma membrane. The transcript of TaCYP20-2 was higher in gaid than that in wild type. Molecular genetic data showed that overexpression of TaCYP20-2 in wheat resulted in a dwarfism similar to that of gaid. It suggests that TaCYP20-2 is a new member that regulates wheat stem development mediated by DELLA protein degradation of GA signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available