4.7 Article

A Ranking-Based Scoring Function for Peptide-Spectrum Matches

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 8, Issue 5, Pages 2241-2252

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr800678b

Keywords

MS/MS; scoring; peptide; PSM; de novo; database search; machine learning; ranking; boosting

Funding

  1. NCRR NIH HHS [P41 RR024851, P-41-RR24851, P41 RR024851-01] Funding Source: Medline

Ask authors/readers for more resources

The analysis of the large volume of tandem mass spectrometry (MS/MS) proteomics data that is generated these days relies on automated algorithms that identify peptides from their mass spectra. An essential component of these algorithms is the scoring function used to evaluate the quality of peptide-spectrum matches (PSMs). In this paper, we present new approach to scoring of PSMs. We argue that since this problem is at its core a ranking task (especially in the case of de novo sequencing), it can be solved effectively using machine learning ranking algorithms. We developed a new discriminative boosting-based approach to scoring. Our scoring models draw upon a large set of diverse feature functions that measure different qualities of PSMs. Our method improves the performance of our de novo sequencing algorithm beyond the current state-of-the-art, and also greatly enhances the performance of database search programs. Furthermore, by increasing the efficiency of tag filtration and improving the sensitivity of PSM scoring, we make it practical to perform large-scale MS/MS analysis, such as proteogenomic search of a six-frame translation of the human genome (in which we achieve a reduction of the running time by a factor of 15 and a 60% increase in the number of identified peptides, compared to the InsPecT database search tool). Our scoring function is incorporated into PepNovo+ which is available for download or can be run online at http://bix.ucsd.edu.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available