4.5 Article

EVALUATION OF THE SEALING CAPABILITY OF IMPLANTS TO TITANIUM AND ZIRCONIA ABUTMENTS AGAINST PORPHYROMONAS GINGIVALIS, PREVOTELLA INTERMEDIA, AND FUSOBACTERIUM NUCLEATUM UNDER DIFFERENT SCREW TORQUE VALUES

Journal

JOURNAL OF PROSTHETIC DENTISTRY
Volume 112, Issue 3, Pages 561-567

Publisher

MOSBY-ELSEVIER
DOI: 10.1016/j.prosdent.2013.11.010

Keywords

-

Ask authors/readers for more resources

Statement of problem. When evaluating long-term implant success, clinicians have always been concerned with the gap at the implant-abutment junction, where bacteria can accumulate and cause marginal bone loss. However, little information regarding bacterial leakage at the implant-abutment junction, or microgap, is available. Purpose. The purpose of this study was to evaluate sealing at 2 different implant-abutment interfaces under different screw torque values. Material and methods. Twenty sterile zirconia abutments and 20 sterile titanium abutments were screwed into 40 sterile implants and placed in test tubes. The ability of a bacterial mixture of Prevotella intermedia, Porphyromonas gingivalis, and Fusobacterium nucleatum to leak through an implant-titanium abutment seal under 20 and 35 Ncm torque values and an implant-zirconia abutment seal under 20 and 35 Ncm torque values was evaluated daily until leakage was noted. Once a unit demonstrated leakage, a specimen was plated. After 4 days, the number of colonies on each plate was counted with an electronic colony counter. Plating was used to verify whether or not bacterial leakage occurred and when leakage first occurred. The implant-abutment units were removed and rinsed with phosphate buffered saline solution and evaluated with a stereomicroscope. The marginal gap between the implant and the abutment was measured and correlated with the amount of bacterial leakage. The data were analyzed with ANOVA. Results. Bacterial leakage was noted in all specimens, regardless of material or screw torque value. With titanium abutments, changing the screw torque value from 20 to 35 Ncm did not significantly affect the amount of bacterial leakage. However, with zirconia abutments, changing the screw torque value from 20 to 35 Ncm was statistically significant (P<.017). Overall, the marginal gap noted was larger at the zirconia-abutment interface (5.25 +/- 1.99 mu m) than the titanium-abutment interface (12.38 +/- 3.73 mu m), irrespective of the screw torque value. Stereomicroscopy revealed a nonuniform marginal gap in all specimens. Conclusion. The results of this study showed that, over time, bacteria will leak through the implant-abutment microgap at the implant-abutment interface. Implants with a titanium abutment demonstrate a smaller microgap than implants with a zirconia abutment. Tightening the zirconia abutment screw from 20 to 35 Ncm decreases the size of the microgap, which suggests a more intimate fit between the implant and the abutment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available