4.4 Article Proceedings Paper

Analysis of Curved-Cooling-Channel Flow and Heat Transfer in Rocket Engines

Journal

JOURNAL OF PROPULSION AND POWER
Volume 27, Issue 5, Pages 1045-1053

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.B34163

Keywords

-

Ask authors/readers for more resources

Coolant-flow modeling in regeneratively cooled rocket engines fed with turbomachinery is a challenging task because of the high wall-temperature gradient, the high Reynolds number, the high aspect ratio of the channel cross section, and the curved geometry. In the present study, to better comprehend the role of the thrust-chamber shape of a rocket engine on the heat exchange, computations of supercritical hydrogen flow in single- and double-curvature channels are carried out. In particular, a parametric numerical analysis of the flow in an asymmetrically heated rectangular channel with a high aspect ratio and various radii of curvature is performed by means of a Reynolds. averaged Navier Stokes solver for real fluids, which is validated against experimental data of heated and curved. channel flow taken from open literature. Results permit the effect of curvature on global heat transfer coefficient, pressure loss, and bulk temperature increase to be quantified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available