4.7 Article

Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress

Journal

PHYSIOLOGIA PLANTARUM
Volume 155, Issue 2, Pages 192-204

Publisher

WILEY
DOI: 10.1111/ppl.12336

Keywords

-

Categories

Funding

  1. Special Fund for Forest Scientific Research in the Public Welfare [201404217]
  2. National Natural Science Foundation of China [31270639, 31170567]
  3. Program for Changjiang Scholars and Innovative Research Team in University of China [IRT1035]

Ask authors/readers for more resources

Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (phi PSII), non-photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well-watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available