4.8 Article

RuO2/graphene hybrid material for high performance electrochemical capacitor

Journal

JOURNAL OF POWER SOURCES
Volume 248, Issue -, Pages 407-415

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2013.09.081

Keywords

Symmetrical electrochemical capacitor; Aqueous electrolyte; Hybrid material; Energy density; Cycle stability

Funding

  1. National Natural Science Foundation of China [51172137]
  2. Natural Science Key Foundation of Shaanxi Province [2011JZ001]
  3. Changjiang Scholars and Innovative Research Team in University
  4. Fundamental Research Funds for the Central Universities [GK201101003, GK201301002]

Ask authors/readers for more resources

Ruthenium oxide/graphene (RuO2/GR) hybrid materials for high performance electrochemical capacitor have been prepared by a solution-phase assembly technology between RuO2 nanosheets and GR nanosheets at room temperature. The high dispersion of RuO2 and GR nanosheets maintains a high structural stability for the hybrid material, and causes an obvious synergistic effect between the RuO2 and GR nanosheets. A specific capacitance of 479 F g(-1) has been obtained for the hybrid material with RuO2 mass content of 40% (abbreviated as RuGR46), and a high specific capacitance of 998 F ri obtained for RuO2 in the electrode. The utilization of RuO2 in the RuGR46 hybrid material increases by adding GR, and the capacitance of RuGR46 is quite comparable to that of the pristine RuO2 center dot xH(2)O while 60 wt% of RuO2 can be saved. A symmetrical electrochemical capacitor based on the RuGR46 electrode is assembled with 0.5 mol L-1 H2SO4 solution as the electrolyte in a voltage of 0-1.2 V. It can give a high energy density of 20.28 Wh kg(-1) at a power density of 600 W kg(-1). Moreover, it presents a high power density (14.03 Wh kg(-1) at 12 kW kg(-1)) and excellent cycle performance. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available