4.8 Article

Studies on pressure losses and flow rate optimization in vanadium redox flow battery

Journal

JOURNAL OF POWER SOURCES
Volume 248, Issue -, Pages 154-162

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.09.071

Keywords

Vanadium redox flow battery; Concentration overpotential; Pressure losses; Pumping energy; Flow rate optimization

Ask authors/readers for more resources

Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available