4.8 Article

A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron X-ray powder diffraction

Journal

JOURNAL OF POWER SOURCES
Volume 244, Issue -, Pages 109-114

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.03.086

Keywords

In-situ X-ray diffraction; In-situ electrochemical cell; Defect perovskite; Lithium insertion; Kinetic analysis

Funding

  1. AINSE Ltd

Ask authors/readers for more resources

A simple in-situ cell design is formulated based on the various in-situ electrochemical cells developed over the last three decades. The cell is targeted at those researchers who are not necessarily in the field of lithium ion battery research but are interested in synthesising and performing fundamental structural analyses of compounds that cannot be made via any other route. Therefore, this design uses only components that are routinely available and can be machined in-house. The effectiveness of the initial cell design is demonstrated through kinetic analysis of the lithium insertion reaction for the Li0.18Sr0.66Ti0.5Nb0.5O3 defect perovskite using data obtained from hundreds of diffraction patterns. Within the first discharge it has been possible to identify three regions with different rates of crystal lattice expansion. These regions extend from 1.01 to 1.47 V, 1.47-1.58 V and 1.58-2.07 V with rates of crystal lattice expansion determined to be 1.765(6) x 10(-5) angstrom min(-1), 1.44(5) x 10(-5) angstrom min(-1) and 2.47(1) x 10(-5) angstrom min(-1), respectively. These three regions correlate with three distinct regions in the electrochemical profile, between 1.00 and 1.36 V, 1.36-1.55 V and 1.55-1.80 V. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available