4.8 Article

Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells

Journal

JOURNAL OF POWER SOURCES
Volume 225, Issue -, Pages 179-186

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2012.10.039

Keywords

Effective diffusivity; Analytical model; Fibrous media; Proton exchange membrane fuel cell; Gas diffusion layers

Funding

  1. Hong Kong Polytechnic University
  2. Australia Research Council [DP110103991]

Ask authors/readers for more resources

In gas diffusion layers (GDLs) of proton exchange membrane fuel cells (PEMFCs), effective gas diffusivity is a key parameter to be determined and engineered. Existing theoretical models of effective diffusivity are limited to one-dimensional (1D) regular fiber arrays. Numerical simulations were carried out to simulate gas diffusion through more realistic fibrous materials like GDLs, in which fibers are randomly distributed in a two-dimensional (2D) plane or three-dimensional (3D) space, but they could not fully reveal the underlying mechanisms. In this paper, we propose an analytical model to predict the effective diffusivities of 1D, 2D and 3D randomly distributed fiber assembles. The present model is established by extending the model of 1D regular fiber alignments to 1D random fiber arrangements through Voronoi Tessellation method, and using the 1D local diffusivities to determine the 20 and 3D diffusivities based on mixing rules. The predicted effective diffusivities agree well with experimental results and numerical data. With the new model, the influences of porosity, fiber distribution, and fiber orientation are analyzed in this study. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available