4.8 Article

Surface modification of commercial PtRu nanoparticles for methanol electro-oxidation

Journal

JOURNAL OF POWER SOURCES
Volume 240, Issue -, Pages 122-130

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2013.04.001

Keywords

Platinum; Ruthenium; Displacement reaction; Methanol electro-oxidation; X-ray absorption spectroscopy

Funding

  1. National Science Council [NSC100-2221-E009-075-MY3]
  2. National Synchrotron Radiation Research Center

Ask authors/readers for more resources

The surfaces of commercially available PtRu nanoparticles (PtRu/C) have been successfully modified via a displacement reaction between the Ru atoms on the PtRu/C and the Pt ions in an aqueous hexachloroplatinic acid solution. The concentration of the hexachloroplatinic acid solution was deliberately formulated to allow for the formation of sub-monolayered Pt (Pt(1/16)) and monolayered Pt (Pt(1/8)) on the surface of PtRu/C. Material characterization, including X-ray diffraction patterns and transmission electron microscopy images, showed that the PtRu phases of the samples were identical but that the particle sizes increased slightly after the surface modification. Data from inductively coupled plasma mass spectrometry confirmed the deposition of Pt with negligible loss of Ru. X-ray absorption spectroscopy showed Pt-enriched surfaces, and the surface Pt content decreased in the order Pt(1/8) > Pt(1/16) > PtRu/C. Cyclic voltammetry and chronoamperometry were conducted for methanol electro-oxidation, and our results indicated impressive catalytic ability and carbon monoxide tolerance for Pt(1/16), followed by Pt(1/8) and PtRu/C. The mass activities of Pt(1/16) and Pt(118) increased 223% and 135% over that of PtRu/C. We attributed the observed improvements to the reduced amount of Ru on the PtRu surface, which resulted in an optimized PtRu ratio with enhanced catalytic ability. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available