4.8 Article

Electrochemical conversion of H2O/CO2 to fuel in a proton-conducting solid oxide electrolyser

Journal

JOURNAL OF POWER SOURCES
Volume 232, Issue -, Pages 187-192

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.01.039

Keywords

Solid oxide electrolyser; Steam electrolysis; Carbon dioxide; Proton conductor; Electrochemical reduction

Funding

  1. NSFC [51142008]

Ask authors/readers for more resources

In this paper, we demonstrate the direct conversion of CO2/H2O into fuel in a proton-conducting solid oxide electrolyser with the configuration (La0.75Sr0.25)(0.95)Mn0.5Cr0.5O3-delta (LSCM, oxygen electrode)/BaCe0.5Zr0.3Y0.16Zn0.04O3-delta (BCZYZ, proton-conducting electrolyte)/Ni (fuel electrode) at 600 degrees C, where 5% H2O/Ar and 100% CO2 are fed into the oxygen electrode and fuel electrode, respectively. AC impedance spectroscopy and I-V testing demonstrate two main processes in the electrochemical process from 0 to 2 V: (1) the reoxidation of the LSCM electrode (Mn-3 +/- -> Mn-4 +/-) below 1.2 V (iR-corrected voltage) and (2) the oxidation of H2O (H2O - 2e -> H-+/- +/- 1/2O(2)) above 1.2 V (iR-corrected voltage). The current density reaches similar to 0.1 Acm(-2) at 2 V versus open circuit voltage (OCV) with a total polarisation resistance of 7.5 Omega cm(2). Steam is steadily electrolysed under a 2 V load at 600 degrees C, and the generated protons in the fuel electrode are simultaneously and completely utilised to electrochemically reduce CO2 with 100% selectivity and similar to 90% current efficiency to CO fuel. However, the carbon deposition, poisoning and oxidation of Ni metal in the fuel electrode degrade the cell performance. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available