4.8 Article

Poly(ethylenglycol)dimethylether-lithium bis(trifluoromethanesulfonyl)imide, PEG500DME-LiTFSI, as high viscosity electrolyte for lithium ion batteries

Journal

JOURNAL OF POWER SOURCES
Volume 226, Issue -, Pages 329-333

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2012.10.059

Keywords

Poly(ethyleneglycol)dimethylether; Lithium bis(trifluoromethanesulfonyl)imide; PEG500DME-LiTFSI; Safe-electrolyte; Lithium ion battery

Funding

  1. Italian Institute of Technology (IIT)

Ask authors/readers for more resources

In this paper we report a poly(ethylenglycol)dimethylether-lithium bis(trifluoromethanesulfonyl) imide (PEG500DME-LiTFSI) as high viscosity, safe electrolyte for lithium ion batteries. The high molecular weight of the end-capped ether solvent is reflected as low vapor pressure and excellent thermal stability of the electrolyte, as demonstrated by thermogravimetry, this resulting in remarkable safety content. The electrochemical impedance spectroscopy study of the electrolyte demonstrates a Li-transference number of 0.48, a conductivity of the order of 10(-3) S cm(-1), and a high interphase stability with the lithium metal, the linear sweep voltammetry indicates an electrochemical stability window extending up to 4.8 V vs. Li/Li+. Furthermore, promising electrochemical performances in terms of reversibility, cycling stability and low charge-discharge polarization are observed using the electrolyte in lithium and in lithium ion batteries using lithium cobalt oxide (LCO) as cathode and titanium dioxide (TiO2) as anode. Hence, this electrolyte is a promising candidate for applications in safe, high performance lithium ion batteries. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available