4.8 Article

Characterization of polyethyleneterephthalate (PET) based proton exchange membranes prepared by UV-radiation-induced graft copolymerization of styrene

Journal

JOURNAL OF POWER SOURCES
Volume 196, Issue 2, Pages 614-619

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2010.08.004

Keywords

Polymer electrolyte membrane; Styrene; Fuel cell; UV radiation; Grafting; Sulfonation

Ask authors/readers for more resources

Polymer electrolyte membranes (PEMs) were successfully prepared by simultaneous ultraviolet (UV) radiation-induced graft copolymerization of styrene (35 vol.% concentration) onto poly(ethyleneterephthalate) (PET) film, followed by sulfonation on the styrene monomer units in the grafting chain using 0.05 M chlorosulfonic acid (ClSO3H). The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as Fourier Transform Infrared (FTIR) spectroscopy. The maximum ion-exchange capacity (IEC) of the PEM was measured to be 0.04385 mmol g(-1) at its highest level of grafting and sulfonation. They exhibited high thermal and mechanical properties as well as oxidative stability. They are highly stable in H2SO4 solutions and can be used in the acidic fuel cells. The membranes showed low water uptake as well as low proton conductivity than Nafion. In this study, the preparation of PEMs from commodity-type polymers is found to be very inexpensive and is a suitable candidate for applications in fuel cells. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available