4.8 Article

Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes

Journal

JOURNAL OF POWER SOURCES
Volume 195, Issue 19, Pages 6373-6378

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2010.04.019

Keywords

Non-precious metal catalyst; Stability; Activity; Oxygen reduction reaction; Alkaline electrolyte; Fuel cell

Ask authors/readers for more resources

The activity and stability of non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in both acid and alkaline electrolytes were studied by the rotating disk electrode technique. The NPMCs were prepared through the pyrolysis of cobalt-iron-nitrogen chelate followed by combination of pyrolysis, acid leaching, and re-pyrolysis. In both environments, the catalysts heat-treated at 800-900 degrees C exhibited relatively high activity. Particularly, an onset potential of 0.92V and a well-defined limiting current plateau for the ORR was observed in alkaline medium. The potential cycling stability test revealed the poor stability of NPMCs in acid solution with an exponential increase in the performance degradation as a function of the number of potential cycling. In contrast, the NPMCs demonstrated exceptional stability in alkaline solution. The numbers of electron transferred during the ORR on the NPMCs in acid and alkaline electrolytes were 3.65 and 3.92, respectively, and these numbers did not change before and after the stability test. XPS analysis indicated that the N-containing sites of catalysts are stable before and after the stability test when in alkaline solution but not in acid solution. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available