4.8 Article

A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced lithium-ion batteries

Journal

JOURNAL OF POWER SOURCES
Volume 195, Issue 9, Pages 2900-2904

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2009.11.041

Keywords

Cathode material; Al substitution; Li-ion battery; Cycling performance

Funding

  1. National 973 program [2002CB211800, 2009CB220100]
  2. National High-tech 863 [2006AA11A165]
  3. BIT Basic Research Fund [20070542004]

Ask authors/readers for more resources

A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 with alpha-NaFeO2 structure is synthesized by sol-gel method. X-ray diffraction (XRD) shows that the cation mixing in the Li layers of it is decreased. in addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are employed to characterize the reaction of lithium-ion insertion and extraction from materials. The results indicate that the structure of LiNi0.32Mn0.33Co0.33Al0.01O2 is more stable than that of the LiNi0.33Mn0.33Co0.33O2. The capacity retention of LiNi0.33Mn0.33Co0.33O2. after 40 cycles at 2.0 C is only 89.9%, however, that of the LiNi0.32Mn0.33Co0.33Al0.01O2 is improved to 97.1%. The capacity of the LiNi0.32Mn0.33Co0.33Al0.01O2 at 4.0 C remains 71.8% of the capacity at 0.2 C, while that of the LiNi0.33Mn0.33Co0.33O2 is only 54.3%. EIS measurement reveals that the increase in the charge transfer resistance during cycling is suppressed in the LiNi0.32Mn0.33Co0.33Al0.01O2 material. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available