4.8 Article

Mass transport analysis of a passive vapor-feed direct methanol fuel cell

Journal

JOURNAL OF POWER SOURCES
Volume 195, Issue 20, Pages 7011-7024

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2010.05.003

Keywords

Fuel cell; Passive DMFC; Vapor feed; Two-phase mass transport model; Water transport; Concentrated solution

Funding

  1. National Science Foundation [CBET-0730349]

Ask authors/readers for more resources

A two-dimensional, two-phase, non-isothermal model using the multi-fluid approach was developed for a passive vapor-feed direct methanol fuel cell (DMFC). The vapor generation through a membrane vaporizer and the vapor transport through a hydrophobic vapor transport layer were both considered in the model. The evaporation/condensation of methanol and water in the diffusion layers and catalyst layers was formulated considering non-equilibrium condition between phases. With this model, the mass transport in the passive vapor-feed DMFC, as well as the effects of various operating parameters and cell configurations on the mass transport and cell performance, were numerically investigated. The results showed that the passive vapor-feed DMFC supplied with concentrated methanol solutions or neat methanol can yield a similar performance with the liquid-feed DMFC fed with much diluted methanol solutions, while also showing a higher system energy density. It was also shown that the mass transport and cell performance of the passive vapor-feed DMFC depend highly on both the open area ratio of the vaporizer and the methanol concentration in the tank. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available