4.8 Article Proceedings Paper

A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries

Journal

JOURNAL OF POWER SOURCES
Volume 194, Issue 1, Pages 45-50

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2008.12.013

Keywords

Lithium batteries; Electrolytes; Ionic liquids; Pyrrolidinium; LiTFSI

Ask authors/readers for more resources

Room temperature ionic liquids are nowadays the most appealing research target in the field of liquid electrolytes for lithium batteries, due to their high thermal stability, ionic conductivity and wide electrochemical windows. The cation structure of such solvents strictly influences their physical and chemical properties, in particular the viscosity and conductivity. In this paper we report on the preparation and characterization of a complete series of solutions between lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the promising N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (PY1,201) ionic liquid. A wide molality range has been explored in order to identify the optimal compositions in terms of conductivity and electrochemical stability. Our thermal results show that the solutions are amorphous independently on the LiTFSI content. Up to salt concentration of 0.4 mol kg(-1) the solutions have a very low viscosity (eta similar to 36 cP), a high ionic conductivity, even at temperatures below 0 degrees C, and a good electrochemical stability. Cations transport numbers ranging between 0.05 and 0.39 have been determined as a function of LiTFSI content. The combination of these properties makes the PY1,201-based solutions potentially attractive liquid electrolytes for lithium batteries. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available