4.8 Article Proceedings Paper

Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels

Journal

JOURNAL OF POWER SOURCES
Volume 194, Issue 1, Pages 206-213

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2009.05.003

Keywords

Proton exchange membranes; Direct methanol fuel cell; Poly(arylene ether ether ketone ketone); Sulfonated silica nanoparticles

Ask authors/readers for more resources

We explore an approach to effectively enhance the properties of cost-effective hydrocarbon proton-exchange membranes for application in the direct methanol fuel cell (DMFC). This approach utilizes sulfonated silica nanoparticles (SA-SNP) as additives to modify sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK). The interaction between the sulfonic acid groups of SA-SNP and those of SPAEEKK combined with hydrophilic-hydrophobic phase separation induce the formation of proton conducting channels, as evidenced by TEM images, which contribute to increases in the proton conductivity of the SPAEEKK/SA-SNP nanocomposite membrane. The presence of SA-SNP nanoparticles also reduces methanol crossover in the membrane. Therefore, the SPAEEKK/SA-SNP nanocomposite membrane shows a high selectivity, which is 2.79-fold the selectivity of Nafion (R) 117. The improved selectivity of the SPAEEKK/SNP nanocomposite membrane demonstrates potential of this approach in providing hydrocarbon-based PEMs as alternatives to Nafion in direct methanol fuel cells. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available