4.8 Article

Effect of PTFE content in microporous layer on water management in PEM fuel cells

Journal

JOURNAL OF POWER SOURCES
Volume 177, Issue 2, Pages 457-463

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2007.11.055

Keywords

proton exchange membrane fuel cell; gas diffusion layer; microporous layer; hydrophobic agent; water management

Ask authors/readers for more resources

The effect of hydrophobic agent (PTFE) concentration in the microporous layer on the PEM fuel cell performance was investigated using mercury porosimetry, water permeation experiment, and electrochemical polarization technique. The mercury porosimetry and water permeation experiments indicated that PTFE increases the resistance of the water flow through the GDL due to a decrease of the MPL porosity and an increase of the volume fraction of hydrophobic pores. When air was used as an oxidant, a maximum fuel cell performance was obtained for a PTFE loading of 20 wt.%. The experimental polarization curves were quantitatively analyzed to determine the polarization resistances resulting from different physical and electrochemical processes in the PEM fuel cell. The polarization analysis indicated that the optimized PTFE content results in an effective water management (i.e., a balancing of water saturations in the catalyst layer and the gas diffusion layer), thereby improving the oxygen diffusion kinetics in the membrane-electrode assembly. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available