4.8 Article

Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells

Journal

JOURNAL OF POWER SOURCES
Volume 176, Issue 1, Pages 9-15

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2007.10.016

Keywords

polymer electrolyte fuel cell; Pt/CNT catalyst; sulfonation; thermal decomposition; in situ radical polymerization

Ask authors/readers for more resources

Sulfonic acid groups were grafted onto the surface of carbon-nanotube supported platinum (Pt/CNT) catalysts to increase platinum utilization in polymer electrolyte fuel cells (PEFCs) by both thermal decomposition of ammonium sulfate and in situ radical polymerization of 4-styrenesulfonate. The resultant sulfonated Pt/CNT catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry, thermal gravimetric analysis (TGA) and electrochemical methods. The electrodes with the Pt/CNT catalysts sulfonated by the in situ radical polymerization of 4-styrenesulfonate exhibited better performance than did those with the unsulfortated counterparts, mainly because of the easier access with protons and well dispersed distribution of the sulfonated Pt/CNT catalysts, indicating that sulfonation is an efficient approach to improve performance and reduce cost for the Pt/CNT-based PEFCs. The electrodes with the Pt/CNT catalysts sulfonated by the thermal decomposition of ammonium sulfate, however, did not yield the expected performance as in the case of carbon black supported platinum (Pt/C) catalysts, probably due to the significant agglomeration of platinum particles on the CNT surface at high temperatures, indicating that the Pt/CNT catalysts are more sensitive to temperature than the Pt/C catalysts. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available