4.4 Article

Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner

Journal

PHYSICS OF PLASMAS
Volume 22, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4915520

Keywords

-

Funding

  1. DoE [DE-SC0002590, DE-SC0012328]
  2. Sandia National Laboratories
  3. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
  4. U.S. Department of Energy (DOE) [DE-SC0012328] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a pre-heated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available