4.2 Article

Synthesis of Magnetic, Reactive, and Thermoresponsive Fe3O4 Nanoparticles via Surface-Initiated RAFT Copolymerization of N-Isopropylacrylamide and Acrolein

Journal

Publisher

WILEY
DOI: 10.1002/pola.23752

Keywords

magnetic polymers; nanoparticles; poly(N-isopropylacrylamide-co-acrolein); reversible addition-fragmentation chain transfer (RAFT); surface-initiated copolymerization

Funding

  1. Natural Science Foundation of China [20874115]

Ask authors/readers for more resources

A reversible addition-fragmentation chain transfer (RAFT) agent was directly anchored onto Fe3O4 nanoparticles in a simple procedure using a ligand exchange reaction of S-1-dodecyl-S'-(alpha,-alpha'-dimethyl-alpha-acetic acid)trithiocarbonate with oleic acid initially present on the surface of pristine Fe3O4 nanoparticles. The RAFT agent-functionalized Fe3O4 nanoparticles were then used for the surface-initiated RAFT copolymerization of N-isopropylacrylamide and acrolein to fabricate structurally well-defined hybrid nanoparticles with reactive and thermoresponsive poly(N-isopropylacrylamide-co-acrolein) shell and magnetic Fe3O4 core. Evidence of a well-controlled surface-initiated RAFT copolymerization was gained from a linear increase of number-average molecular weight with overall monomer conversions and relatively narrow molecular weight distributions of the copolymers grown from the nanoparticles. The resulting novel magnetic, reactive, and thermoresponsive core-shell nanoparticles exhibited temperature-trigged magnetic separation behavior and high ability to immobilize model protein BSA. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 542-550, 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available