4.2 Article

Novel Well-Defined Glycopolymers Synthesized via the Reversible Addition Fragmentation Chain Transfer Process in Aqueous Media

Journal

Publisher

WILEY
DOI: 10.1002/pola.23187

Keywords

biomaterials; block copolymers; cytoxicity; DNA complexation; glycopolymers; reversible addition fragmentation chain transfer

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

We describe here the direct synthesis of novel gluconamidoalkyl methacrylamides by reacting D-gluconolactone with aminoalkyl methacrylamides. The glycomonomers were then successfully polymerized via the reversible addition-fragmentation chain transfer process (RAFT) using 4-cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4'-azobis(4-cyanovaleric acid) (ACVA) as the initiator in aqueous media. Well-defined polymers were obtained as revealed by gel permeation chromatography. Diblock copolymers were then synthesized by the macro-CTA approach. The cationic glycopolymers were subsequently used in the formation of nanostructures via the complexation with plasmid DNA. As noted by dynamic light scattering, monodisperse nanoparticles were obtained via the electrostatic interaction of the cationic glycopolymer with DNA. The sizes of the nanoparticles formed were found to be stable and independent of pH. In vitro cell viability studies of the glycopolymers were carried out using HELA cell lines. The RAFT synthesized glycopolymers and cationic glyco-copolymers revealed to be nontoxic. (C) 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 614-627, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available