4.2 Article

Synthesis and characterization of hyperbranched polymers with increased chemical versatility for imprint lithographic resists

Journal

JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY
Volume 46, Issue 18, Pages 6238-6254

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/pola.22934

Keywords

hyperbranched; imprint lithography; living radical polymerization; photopolymerization; resists

Funding

  1. Semiconductor Research Corporation
  2. Swedish Research Council [2006-3617]
  3. National Science Foundation [DMR05-20415]

Ask authors/readers for more resources

Hyperbranched polymers were prepared from a variety of mono- and difunctional monomers and used in the development of novel UV-imprint lithography (UV-IL) resists. The unique physical and chemical properties of these hyperbranched materials significantly increase the range of molecular systems that could be imprinted. Traditional challenges, such as the use of monomers that have low boiling points or the use of insoluble/highly crystalline momomers, are overcome by the preparation of hyperbranched polymers that incorporate these repeat units. In addition, the low viscosity of the hyperbranched macromolecules and the large number of reactive chain ends overcome many difficulties that are traditionally associated with the use of polymeric materials as imprint resists. Hyperbranched polymers containing up to 12 mol % pendant vinyl groups, needed for secondary crosslinking during imprinting, were prepared with a wide range of repeat unit structures and successfully imprinted with features from tens of microns to similar to 100 nm. (C) 2008 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available