4.4 Article

Cu nanoparticles supported mesoporous polyaniline and its applications towards non-enzymatic sensing of glucose and electrocatalytic oxidation of methanol

Journal

JOURNAL OF POLYMER RESEARCH
Volume 20, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10965-013-0083-y

Keywords

Mesoporous polyaniline; Non-enzymatic sensing; Glucose sensor; Methanol oxidation

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, [01(2423)/10/EMR-II]
  2. Indo-Mexican Joint Research Project [DST/INT/MEX/01-04/2011(iii)]
  3. CSIR, New Delhi

Ask authors/readers for more resources

Cu nanoparticles supported on mesoporous polyaniline (Cu/Meso-PANI) was synthesized by the self assembly of dual surfactants followed by the in-situ reduction of CuCl2 in aqueous solution. Materials were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, and UV-visible spectroscopic method. Cu/Meso-PANI based non-enzymatic electrochemical sensor was fabricated for glucose detection. The Cu/Meso-PANI modified electrode showed high electrocatalytic activity towards the oxidation of glucose compared to Cu/PANI (Cu nanoparticles supported on conventional polyaniline), which is due the highly dispersed copper in the high surface area Meso-PANI matrix. The Cu/Meso-PANI modified electrode exhibited high selectivity towards glucose against several common interfering species. Cu/Meso-PANI modified electrode was also explored for the electrochemical oxidation of methanol, which finds application in direct methanol fuel cell. The electrochemical oxidation of methanol was investigated at the surface of Cu/Meso-PANI modified electrode in alkaline medium using cyclic voltammetry and chronoamperometry methods. Various reaction parameters such as effect of scan rate and concentration of methanol were investigated. Furthermore, the rate constant (k) for the electrocatalytic oxidation of methanol was also calculated. The promising electrocatalytic activity of Cu/Meso-PANI modified electrode provides a new platform for the fabrication of polyaniline based high-performance sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available