4.7 Article

Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling

Journal

JOURNAL OF PLANT PHYSIOLOGY
Volume 169, Issue 2, Pages 137-145

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2011.08.004

Keywords

Abscisic acid; Bryophytes; Cold acclimation; Soluble sugars

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan [22570035, 23119504]
  2. Grants-in-Aid for Scientific Research [22570035] Funding Source: KAKEN

Ask authors/readers for more resources

Overwintering plants develop tolerance to freezing stress through a cold acclimation process by which the cells provoke internal protective mechanisms against freezing. The stress hormone abscisic acid (ABA) is known to increase freezing tolerance of plant cells, but its role in cold acclimation has not been determined. In this study, we used ABA-insensitive lines of the moss Physcomitrella patens to determine whether cold acclimation in bryophytes involves an ABA-dependent process. Two ABA-insensitive lines, both impaired in ABA signaling without showing ABA-induced stress tolerance, were subjected to cold acclimation, and changes in freezing tolerance and accumulation of soluble sugars and proteins were compared to the wild type. The wild-type cells acquired freezing tolerance in response to cold acclimation treatment, but very little increase in freezing tolerance was observed in the ABA-insensitive lines. Analysis of low-molecular-weight soluble sugars indicated that the ABA-insensitive lines accumulated sucrose, a major compatible solute in bryophytes, to levels comparable with those of the wild type during cold acclimation. However, accumulation of the trisaccharide theanderose and of specific LEA-like boiling-soluble proteins was very limited in the ABA-insensitive lines. Furthermore, analysis of cold-induced expression of genes encoding LEA-like proteins revealed that the ABA-insensitive lines accumulate only small amounts of these transcripts during cold acclimation. Our results indicate that cold acclimation of bryophytes requires an ABA-dependent signaling process. The results also suggest that cold-induced sugar accumulation, depending on the sugar species, can either be dependent or independent of the ABA-signaling pathway. (C) 2011 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available