4.7 Article

Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings

Journal

JOURNAL OF PLANT PHYSIOLOGY
Volume 169, Issue 12, Pages 1150-1157

Publisher

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.jplph.2012.03.016

Keywords

Carbon; Citrus; Flooding; Isotopic labeling; Nitrogen

Categories

Funding

  1. Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria [RTA2008-00060]
  2. Generalitat Valenciana
  3. FEDER funds

Ask authors/readers for more resources

Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through N-15 and C-13 labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that N-15 uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). (CO2)-C-13 assimilation into the plant was strongly reduced by flooding, with delta C-13 reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed C-13 was also altered. Thus, C-13 recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to be a consequence of impaired uptake and transport. On the other hand, the observed changes in carbohydrate distribution suggest that translocation from leaves to roots was reduced, leading to significant starch accumulation in leaves and further decreases in roots. (c) 2012 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available