4.7 Article

Endogenous RNA interference of chalcone synthase genes in soybean: Formation of double-stranded RNA of GmIRCHS transcripts and structure of the 5′ and 3′ ends of short interfering RNAs

Journal

JOURNAL OF PLANT PHYSIOLOGY
Volume 168, Issue 11, Pages 1264-1270

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2011.01.003

Keywords

CHS genes; dsRNA; RNAi; siRNA; Soybean

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan [20380001]
  2. Hirosaki University, Japan
  3. Grants-in-Aid for Scientific Research [20380001] Funding Source: KAKEN

Ask authors/readers for more resources

In yellow soybean, seed coat pigmentation is inhibited via endogenous RNA interference (RNAi) of the chalcone synthase (CHS) genes. Genetic studies have shown that a single dominant gene, named the I gene, inhibits pigmentation over the entire seed coat in soybean. We previously isolated a candidate for the I gene from the yellow soybean genome with the I/I genotype, and designated it GmIRCHS. A structural feature of GmIRCHS is a perfect inverted repeat of the pseudoCHS gene lacking 5'-coding region. This suggests that the double-stranded RNA (dsRNA) structure of the pseudoCHS gene may be formed in the GmIRCHS transcript. RNAi is triggered by the dsRNA for a target gene, so the GmIRCHS transcript is likely to be a trigger for RNAi of CHS genes. In this study, we identified a 1087-bp dsRNA, including pseudoCHS region ranging from most of exon 2 to 3'-UTR, in the GmIRCHS transcript Interestingly, this dsRNA was detected not only in the seed coat but also in the cotyledon and leaf tissues. Previously, CHS RNAi has been shown to be restricted to the seed coat, and we reported that endogenous short interfering RNAs of CHS genes (CHS siRNAs) are detected only in the seed coat and not in the cotyledon and leaf tissues. Taken together with these previous reports, our result suggests that seed-coat specificity of CHS RNAi may be determined in the amplification step of CHS siRNAs rather than dsRNA formation in the GmIRCHS transcript. Our studies further revealed that CHS siRNAs are modified at the 3' ends and bear 5' monophosphorylated ends, suggesting that CHS siRNA duplexes are generated by Dicer-like enzyme from CHS dsRNA and subsequently modified at the 3' ends for stabilizing CHS siRNAs. (C) 2011 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available