4.7 Article

Ozone responsive genes in Medicago truncatula: Analysis by suppression subtraction hybridization

Journal

JOURNAL OF PLANT PHYSIOLOGY
Volume 166, Issue 12, Pages 1284-1295

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2009.01.009

Keywords

Genes; Medicago; Ozone; Stress; Suppression subtraction hybridization

Categories

Funding

  1. Oklahoma Agricultural Experiment Station [2528]
  2. USDA [NRI-2007-02635]

Ask authors/readers for more resources

Acute ozone is a model. abiotic elicitor of oxidative stress in plants. In order to identify genes that are important for conferring ozone resistance or sensitivity we used two accessions of Medicago truncatula with contrasting responses to this oxidant. We used suppression subtraction hybridization (SSH) to identify genes differentially expressed in ozone-sensitive Jemalong and ozone-resistant JE154 following exposure to 300 nL L-1 of ozone for 6 h. Following differential screening of more than 2500 clones from four subtraction libraries, more than 800 clones were selected for sequencing. Sequence analysis of these clones identified 239 unique contigs. Fifteen novel genes of unknown functions were identified. A majority of the ozone responsive genes identified in this study were present in the Medicago truncatula EST collections. Genes induced in JE154 were associated with adaptive responses to stress, while in Jematong, the gene ontologies for oxidative stress, cell growth, and translation were enriched. A meta-analysis of ozone responsive genes using the Genvestigator program indicated enrichment of ABA and auxin responsive genes in JE154, while cytokinin response genes were induced in Jemalong. In resistant JE154, down regulation of photosynthesis-related genes and up regulation of genes responding to low nitrate leads us to speculate that lowering carbon-nitrogen balance may be an important resource allocation strategy for overcoming oxidative stress. Temporal profiles of select genes using real-time PCR analysis showed that most of the genes in Jemalong were induced at the later time points and is consistent with our earlier microarray studies. Inability to mount an early active transcriptional reprogramming in Jemalong may be the cause for an inefficient defense response that in turn leads to severe oxidative stress and culminates in cell death. (C) 2009 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available