4.7 Article

Efficient generation of transgenic barley: The way forward to modulate plant-microbe interactions

Journal

JOURNAL OF PLANT PHYSIOLOGY
Volume 165, Issue 1, Pages 71-82

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2007.06.015

Keywords

Agrobacterium; Hordeum vulgare; plant-fungus interactions; transgenic barley

Categories

Ask authors/readers for more resources

Stable genetic transformation represents the gold standard approach to the detailed elucidation of plant gene functions. This is particularly relevant in barley, an important experimental model widely employed in applied molecular, genetic and cell biological research, and biotechnology. Presented are details of the establishment of a protocol for Agrobacterium-mediated gene transfer to immature embryos, which enables the highly efficient generation of transgenic barley. Advancements were achieved through comparative experiments on the influence of various explant treatments and co-cultivation conditions. The analysis of representative numbers of transgenic lines revealed that the obtained T-DNA copy numbers are typically low, the generative transmission of the recombinant DNA is in accordance with the Mendelian rules and the vast majority of the primary transgenics produce progeny that expresses the respective transgene product. Moreover, the newly established protocol turned out to be useful to transform not only the highly amenable cultivar (cv.) 'Golden Promise' but also other spring and winter barley genotypes, albeit with substantially lower efficiency. As a major result of this study, a very useful tool is now available for future functional gene analyses as well as genetic engineering approaches. With the aim to modify the expression of barley genes putatively involved in plant-fungus interactions, numerous transgenic plants have been generated using diverse expression cassettes. These plants represent an example of how transformation technology may contribute to further our understanding of important biological processes. (C) 2007 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available