4.5 Article

Vertical distribution of soil properties under short-rotation forestry in Northern Germany

Journal

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
Volume 173, Issue 5, Pages 737-746

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.200900230

Keywords

Salix; Populus; C sequestration; microbial biomass; soil enzyme activities; plant-available nutrients

Funding

  1. EU

Ask authors/readers for more resources

Short-rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long-term no-tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp) in 3- and 6-year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short-rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic-C concentrations in the subsoil (By horizon), whereas in transect 2, the organic-C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial-C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of beta-glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long-term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available