4.7 Article

Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats

Journal

JOURNAL OF PINEAL RESEARCH
Volume 49, Issue 4, Pages 373-381

Publisher

WILEY
DOI: 10.1111/j.1600-079X.2010.00804.x

Keywords

enteral melatonin administration; insulin; insulin receptors; melatonin receptors; type 2-diabetic Goto-Kakizaki rats

Funding

  1. Saxon Academy of Sciences, Leipzig

Ask authors/readers for more resources

This paper represents an essential aspect of recent investigations into the functional and clinical implications of insulin-melatonin interrelationships. The aim of the study was to analyze whether melatonin reduces insulin secretion in an animal in a manner comparable to the pattern observed in previous in vitro experiments; to this end, we used two models: Wistar and type 2-diabetic Goto-Kakizaki (GK) rats. Thirty-two Wistar and 32 GK rats were divided into two subgroups of 16 rats each; each subgroup was treated either with or without melatonin. The daily administration of melatonin, starting in 8- wk-old rats, was adjusted to 2.5 mg/kg body weight. Melatonin was given daily during the dark period for 12 hr. After 9 wk of treatment, the rats were sacrificed in the middle of the dark period. Melatonin administration strongly enhanced the plasma melatonin level and diminished the expression of pancreatic melatonin receptor-mRNA, whereas the expression of pineal AA-NAT and HIOMT was unchanged. Furthermore, the experiments showed in agreement with recent in vitro results of pancreatic islets that plasma insulin levels were diminished after melatonin treatment. However, the pineal insulin receptor expression was increased after melatonin administration. The pancreatic expression of glucagon, GLUT2, and glucokinase was decreased in GK rats, whereas the glucose levels, as well as the parameters of glucose sensing, GLUT2-mRNA, and glucokinase-mRNA, were unchanged after melatonin administration in both Wistar and GK rats. In summary, the results show that melatonin administration decreases plasma insulin levels in vivo and, furthermore, that an insulin-melatonin antagonism exists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available