4.6 Article

Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 592, Issue 22, Pages 5065-5078

Publisher

WILEY
DOI: 10.1113/jphysiol.2014.278572

Keywords

-

Funding

  1. USA Office of Naval Research [N000141210214]
  2. National Institutes of Health [DC000151]
  3. NATIONAL INSTITUTE ON DEAFNESS AND OTHER COMMUNICATION DISORDERS [R01DC000151, R56DC000151] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Tinnitus is an auditory percept without an environmental acoustic correlate. Contemporary tinnitus models hypothesize tinnitus to be a consequence of maladaptive plasticity-induced disturbance of excitation-inhibition homeostasis, possibly convergent on medial geniculate body (MGB, auditory thalamus) and related neuronal networks. The MGB is an obligate acoustic relay in a unique position to gate auditory signals to higher-order auditory and limbic centres. Tinnitus-related maladaptive plastic changes of MGB-related neuronal networks may affect the gating function of MGB and enhance gain in central auditory and non-auditory neuronal networks, resulting in tinnitus. The present study examined the discharge properties of MGB neurons in the sound-exposure gap inhibition animal model of tinnitus. MGB single unit responses were obtained from awake unexposed controls and sound-exposed adult rats with behavioural evidence of tinnitus. MGB units in animals with tinnitus exhibited enhanced spontaneous firing, altered burst properties and increased rate-level function slope when driven by broadband noise and tones at the unit's characteristic frequency. Elevated patterns of neuronal activity and altered bursting showed a significant positive correlation with animals' tinnitus scores. Altered activity of MGB neurons revealed additional features of auditory system plasticity associated with tinnitus, which may provide a testable assay for future therapeutic and diagnostic development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available