4.6 Article

Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 591, Issue 18, Pages 4535-4547

Publisher

WILEY
DOI: 10.1113/jphysiol.2013.258400

Keywords

-

Funding

  1. National Heart, Lung, and Blood Institute Grant [R01-HL-57852]
  2. National Institutes of Health HLRI [HL-091056]
  3. American Heart Association (Heartland Affiliate) [0825725G]

Ask authors/readers for more resources

According to the Frank-Starling relationship, greater end-diastolic volume increases ventricular output. The Frank-Starling relationship is based, in part, on the length-tension relationship in cardiac myocytes. Recently, we identified a dichotomy in the steepness of length-tension relationships in mammalian cardiac myocytes that was dependent upon protein kinase A (PKA)-induced myofibrillar phosphorylation. Because PKA has multiple myofibrillar substrates including titin, myosin-binding protein-C and cardiac troponin I (cTnI), we sought to define if phosphorylation of one of these molecules could control length-tension relationships. We focused on cTnI as troponin can be exchanged in permeabilized striated muscle cell preparations, and tested the hypothesis that phosphorylation of cTnI modulates length dependence of force generation. For these experiments, we exchanged unphosphorylated recombinant cTn into either a rat cardiac myocyte preparation or a skinned slow-twitch skeletal muscle fibre. In all cases unphosphorylated cTn yielded a shallow length-tension relationship, which was shifted to a steep relationship after PKA treatment. Furthermore, exchange with cTn having cTnI serines 23/24 mutated to aspartic acids to mimic phosphorylation always shifted a shallow length-tension relationship to a steep relationship. Overall, these results indicate that phosphorylation of cTnI serines 23/24 is a key regulator of length dependence of force generation in striated muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available