4.6 Article

Age-dependent remodelling of inhibitory synapses onto hippocampal CA1 oriens-lacunosum moleculare interneurons

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 589, Issue 20, Pages 4885-4901

Publisher

WILEY-BLACKWELL
DOI: 10.1113/jphysiol.2011.215244

Keywords

-

Funding

  1. Canadian Institutes of Health Research
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Savoy Foundation
  4. NSERC
  5. Fonds de la Recherche en Sante du Quebec

Ask authors/readers for more resources

The Journal of Physiology Stratum oriens-lacunosum moleculare interneurons (O-LM INs) represent the major element of the hippocampal feedback inhibitory circuit, which provides inhibition to the distal dendritic sites of CA1 pyramidal neurons. Although the intrinsic conductance profile and the properties of glutamatergic transmission to O-LM INs have become a subject of intense investigation, far less is known about the properties of the inhibitory synapses formed onto these cells. Here, we used whole-cell patch-clamp recordings in acute mouse hippocampal slices to study the properties and plasticity of GABAergic inhibitory synapses onto O-LM INs. Surprisingly, we found that the kinetics of inhibitory postsynaptic currents (IPSCs) were slower in mature synapses (P26-40) due to the synaptic incorporation of the alpha 5 subunit of the GABA(A) receptor (a5-GABA(A)R). Moreover, this age-dependent synaptic expression of a5-GABA(A)Rs was directly associated with the emergence of long-term potentiation at IN inhibitory synapses. Finally, the slower time course of IPSCs observed in O-LM INs of mature animals had a profound effect on IN excitability by significantly delaying its spike firing. Our data suggest that GABAergic synapses onto O-LM INs undergo significant modifications during postnatal maturation. The developmental switch in IPSC properties and plasticity is controlled by the synaptic incorporation of the a5-GABA(A)R subunit and may represent a potential mechanism for the age-dependent modifications in the inhibitory control of the hippocampal feedback inhibitory circuit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available