4.6 Article

Specific role of dopamine D1 receptors in spinal network activation and rhythmic movement induction in vertebrates

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 587, Issue 7, Pages 1499-1511

Publisher

WILEY
DOI: 10.1113/jphysiol.2008.166314

Keywords

-

Funding

  1. Canadian Institutes of Health Research (CIHR)
  2. Fonds de Recherche en Sante du Quebec (FRSQ)

Ask authors/readers for more resources

Dopamine (DA) is well-recognized for its determinant role in the modulation of various brain functions. DA was also found in in vitro isolated invertebrate preparations to activate per se the central pattern generator for locomotion. However, it is less clear whether such a role as an activator of central neural circuitries exists in vertebrate species. Here, we studied in vivo the effects induced by selective DA receptor agonists and antagonists on hindlimb movement generation in mice completely spinal cord-transected (Tx) at the low-thoracic level (Th9/10). Administration of D1/D5 receptor agonists (0.5-2.5 mg kg(-1), i.p.) was found to acutely elicit rhythmic locomotor-like movements (LMs) and non-locomotor movements (NLMs) in untrained and non-sensory stimulated animals. Comparable effects were found in mice lacking the D5 receptor (D5KO) whereas D1/D5 receptor antagonist-pretreated animals (wild-type or D5KO) failed to display D1/D5 agonist-induced LMs. In contrast, administration of broad spectrum or selective D2, D3 or D4 agonists consistently failed to elicit significant hindlimb movements. Overall, the results clearly show in mice the existence of a role for D1 receptors in spinal network activation and corresponding rhythmic movement generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available