4.6 Article

Loss of functional K+ channels encoded by ether-a-go-go-related genes in mouse myometrium prior to labour onset

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 587, Issue 10, Pages 2313-2326

Publisher

WILEY-BLACKWELL
DOI: 10.1113/jphysiol.2009.171272

Keywords

-

Funding

  1. Action Medical Research Grant [SP4298]
  2. British Heart Foundation
  3. Tommy's baby charity [101]
  4. Japan Society for the Promotion of Science (JSPS) [18790058]
  5. Salt Science Research Foundation [08C6]
  6. Grants-in-Aid for Scientific Research [18790058] Funding Source: KAKEN

Ask authors/readers for more resources

There is a growing appreciation that ion channels encoded by the ether-a-go-go-related gene family have a functional impact in smooth muscle in addition to their accepted role in cardiac myocytes and neurones. This study aimed to assess the expression of ERG1-3 (KCNH1-3) genes in the murine myometrium (smooth muscle layer of the uterus) and determine the functional impact of the ion channels encoded by these genes in pregnant and non-pregnant animals. Quantitative RT-PCR did not detect message for ERG2 and 3 in whole myometrial tissue extracts. In contrast, message for two isoforms of mERG1 were readily detected with mERG1a more abundant than mERG1b. In isometric tension studies of non-pregnant myometrium, the ERG channel blockers dofetilide (1 mu m), E4031 (1 mu m) and Be-KM1 (100 nm) increased spontaneous contractility and ERG activators (PD118057 and NS1643) inhibited spontaneous contractility. In contrast, neither ERG blockade nor activation had any effect on the inherent contractility in myometrium from late pregnant (19 days gestation) animals. Moreover, dofetilide-sensitive K+ currents with distinctive 'hooked' kinetics were considerably smaller in uterine myocytes from late pregnant compared to non-pregnant animals. Expression of mERG1 isoforms did not alter throughout gestation or upon delivery, but the expression of genes encoding auxillary subunits (KCNE) were up-regulated considerably. This study provides the first evidence for a regulation of ERG-encoded K+ channels as a precursor to late pregnancy physiological activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available