4.6 Article

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 586, Issue 1, Pages 151-160

Publisher

WILEY
DOI: 10.1113/jphysiol.2007.142109

Keywords

-

Ask authors/readers for more resources

Low-volume 'sprint' interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 +/- 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake ((V)over dot(O2peak)) before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s 'all out' Wingate Test (mean power output similar to 500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40-60 min of continuous cycling at a workload that elicited similar to 65% (V)over dot(O2peak) (mean power output similar to 150 W) per day, 5 days per week. Weekly time commitment (similar to 1.5 versus similar to 4.5 h) and total training volume (similar to 225 versus similar to 2250kJ week(-1)) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1 alpha protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-gamma coactivator-la. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P<0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time-efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available